Chapter 5:
 The Importance of Measuring Variability

- Measures of Central Tendency Numbers that describe what is typical or "central" in a variable's distribution (e.g., mean, mode, median).
- Measures of Variability - Numbers that describe diversity or variability in a variable's distribution (e.g., range, variance, standard deviation).

Why is Variability important?
Example: Suppose you wanted to know how satisfied students are with their living arrangements and you found that the mean answer was "3" on a five point scale where:
$1=$ very unsatisfied, $2=$ satisfied, $3=$ neutral, 4= satisfied, $5=$ very satisfied

What would you conclude?
Would knowing the variability of the answers help you to understand how satisfied students are with their living arrangements?

Answer: It would help you to see whether the average score of " 3 " means that the majority of students are neutral about their living arrangements
or
that there is a split with students either feeling very satisfied (score of 5) or unsatisfied (score of 1) with their living arrangements (average of 1 's and 5's = 3).

The Range

- Range - A measure of variation in intervalratio variables.
- It is the difference between the highest (maximum) and the lowest (minimum) scores in the distribution.

Range $=$ highest score - lowest score

The Range
- Range - A measure of variation in interval-
ratio variables.
- It is the difference between the highest
(maximum) and the lowest (minimum)
scores in the distribution.
Range = highest score - lowest score

Another example.

What is the range for these IQV (diversity) scores? (higher IQV scores means more diversity)					
Steps to determine: subtract the lowest score \qquad from the highest \qquad to obtain the range of IQV scores \qquad					
State	IQV	State	IQV	State	IQV
Califomia	0.80	Alabama	0.51	Indiana	0.27
New Mexico	0.76	North Carolina	0.51	Utah	0.26
Texas	0.74	Delaware	0.49	Nebraska	0.24
New York	0.66	Colorado	0.45	South Dakota	0.24
Hawaii	0.64	Oklahoma	0.44	Wisconsin	0.24
Maryland	0.62	Connecticut	0.42	Idaho	0.23
New Jersey	0.61	Arkansas	0.40	Wyoming	0.22
Louisiana	0.61	Michigan	0.40	Kentucky	0.20
Arizona	0.61	Tennessee	0.39	Minnesota	0.20
Florida	0.61	Washington	0.37	Montana	0.20
Mississippi	0.61	Massachusetts	0.34	North Dakota	0.17
Georgia	0.59	Missouri	0.31	Iowa	0.13
Nevada	0.57	Ohio	0.31	West Virginia	0.11
Illinois	0.57	Pennsylvania	0.31	New Hampshire	0.08
South Carolina	0.56	Kansas	0.30	Maine	0.06
Alaska	0.56	Rhode Island	0.30	Vermont	0.06
Virginia	0.53	Oregon	0.28		

What is the range for these diversity scores?					
Steps to determine: subtract the lowest score _. 06 __from the highest \qquad to obtain the range of IQV scores \qquad					
State	IQV	State	IQV	State	IQV
Califormia	0.80	Alabama	0.51	Indiana	0.27
New Mexico	0.76	North Carolina	0.51	Utah	0.26
Texas	0.74	Delaware	0.49	Nebraska	0.24
New York	0.66	Colorado	0.45	South Dakota	0.24
Hawaii	0.64	Oklahoma	0.44	Wisconsin	0.24
Maryland	0.62	Connecticut	0.42	Idaho	0.23
New Jersey	0.61	Arkansas	0.40	Wyoming	0.22
Louisiana	0.61	Michigan	0.40	Kentucky	0.20
Arizona	0.61	Tennessee	0.39	Minnesota	0.20
Florida	0.61	Washington	0.37	Montana	0.20
Mississippi	0.61	Massachusetts	0.34	North Dakota	0.17
Georgia	0.59	Missouri	0.31	Iowa	0.13
Nevada	0.57	Ohio	0.31	West Virginia	0.11
Illinois	0.57	Pennsylvania	0.31	New Hampshire	0.08
South Carolina	0.56	Kansas	0.30	Maine	0.06
Alaska	0.56	Rhode Island	0.30	Vermont	0.06
Virginia	0.53	Oregon	0.28		

What is the range for these diversity scores?					
Steps to determine: subtract the lowest score . 06 _from the highest \qquad .80 to obtain the range of IQV scores \qquad					
State	IQV	State	IQV	State	IQV
Califomia	0.80	Alabama	0.51	Indiana	0.27
New Mexico	0.76	North Carolina	0.51	Utah	0.26
Texas	0.74	Delaware	0.49	Nebraska	0.24
New York	0.66	Colorado	0.45	South Dakota	0.24
Hawaii	0.64	Oklahoma	0.44	Wisconsin	0.24
Maryland	0.62	Connecticut	0.42	Idaho	0.23
New Jersey	0.61	Arkansas	0.40	Wyoming	0.22
Louisiana	0.61	Michigan	0.40	Kentucky	0.20
Arizona	0.61	Tennessee	0.39	Minnesota	0.20
Florida	0.61	Washington	0.37	Montana	0.20
Mississippi	0.61	Massachusetts	0.34	North Dakota	0.17
Georgia	0.59	Missouri	0.31	Iowa	0.13
Nevada	0.57	Ohio	0.31	West Virginia	0.11
Illinois	0.57	Pennsylvania	0.31	New Hampshire	0.08
South Carolina	0.56	Kansas	0.30	Maine	0.06
Alaska	0.56	Rhode Island	0.30	Vermont	0.06
Virginia	0.53	Oregon	0.28		

What Steps highes	the term .80	nge for the subtract the o obtain the r	ese	versity sc \qquad \qquad .06 from scores \qquad .74	
State	IQV	State	IQV	State	IQV
Califormia	0.80	Alabama	0.51	Indiana	0.27
New Mexico	0.76	North Carolina	0.51	Utah	0.26
Texas	0.74	Delaware	0.49	Nebraska	0.24
New York	0.66	Colorado	0.45	South Dakota	0.24
Hawaii	0.64	Oklahoma	0.44	Wisconsin	0.24
Maryland	0.62	Connecticut	0.42	Idaho	0.23
New Jersey	0.61	Arkansas	0.40	Wyoming	0.22
Louisiana	0.61	Michigan	0.40	Kentucky	0.20
Arizona	0.61	Tennessee	0.39	Minnesota	0.20
Florida	0.61	Washington	0.37	Montana	0.20
Mississippi	0.61	Massachusetts	0.34	North Dakota	0.17
Georgia	0.59	Missouri	0.31	Iowa	0.13
Nevada	0.57	Ohio	0.31	West Virginia	0.11
Illinois	0.57	Pennsylvania	0.31	New Hampshire	0.08
South Carolina	0.56	Kansas	0.30	Maine	0.06
Alaska	0.56	Rhode Island	0.30	Vermont	0.06
Virginia	0.53	Oregon	0.28		

Inter-quartile Range

- Inter-quartile range (IQR) - The width of the middle 50 percent of the distribution.
- The IQR helps us to get a better picture of the variation in the data than the range because it focuses on the width of the middle 50% rather than extreme scores in the distribution.
- The shortcoming of the range is that an "outlying" case at the top or bottom can increase the range substantially.

Inter-quartile Range

- Inter-quartile range (IQR) - The width of the middle 50 percent of the distribution.
- It is defined as the difference between the lower and upper quartiles (Q1 and Q3.)
- $\operatorname{IQR}=q 3-q 1$
(e.g., $75^{\text {th }}$ percentile $-25^{\text {th }}$ percentile)

What is the IQR for these Diversity Scores?					
State	IQV	State	IQV	State	IQV
California	0.80	Alabama	0.51	Indiana	0.27
New Mexico	0.76	North Carolina	0.51	Utah	0.26
Texas	0.74	Delaware	0.49	Nebraska	0.24
New York	0.66	Colorado	0.45	South Dakota	0.24
Hawaii	0.64	Oklahoma	0.44	Wisconsin	0.24
Maryland	0.62	Connecticut	0.42	Idaho	0.23
New Jersey	0.61	Arkansas	0.40	Wyoming	0.22
Louisiana	0.61	Michigan	0.40	Kentucky	0.20
Arizona	0.61	Tennessee	0.39	Minnesota	0.20
Florida	0.61	Washington	0.37	Montana	0.20
Mississippi	0.61	Massachusetts	0.34	North Dakota	0.17
Georgia	0.59	Missouri	0.31	Iowa	0.13
Nevada	0.57	Ohio	0.31	West Virginia	0.11
Illinois	0.57	Pennsylvania	0.31	New Hampshire	0.08
South Carolina	0.56	Kansas	0.30	Maine	0.06
Alaska	0.56	Rhode Island	0.30	Vermont	0.06
Virginia	0.53	Oregon	0.28		
(Steps are provided on the next slides)					

What is the IQR for the Diversity Scores?

Steps to determine the IQR (Q3-Q1):

1. Order the categories from highest to lowest (or vice versa)
2. To obtain Q1, begin by dividing N (total number of categories or states) by 4 (or alternatively multiply N by .25). This equals \qquad ?
3. We now know that Q1 falls between the $12^{\text {th }}$ and $13^{\text {th }}$ category or, in this case, states.
4. To find the exact number for Q1, determine the midpoint between the $12^{\text {th }}$ and $13^{\text {th }}$ states or between .59 and .57)
5. $Q 1=$

What is the IQR for the Diversity Scores?

Steps to determine the IQR (Q3-Q1):

1. Order the categories from highest to lowest (or vice versa)
2. To obtain Q1, begin by dividing N (total number of categories or states) by 4 (or alternatively multiply N by .25). This equals 12.5 ?
3. We now know that $Q 1$ falls between the $12^{\text {th }}$ and $13^{\text {th }}$ category or, in this case, states.
4. To find the exact number for Q1, determine the midpoint between the $12^{\text {th }}$ and $13^{\text {th }}$ states or between .59 and .57)
5. $\mathrm{Q} 1=$ \qquad

What is the IQR for the Diversity Scores?

Steps to determine the IQR (Q3-Q1):

1. Order the categories from highest to lowest (or vice versa)
2. To obtain Q1, begin by dividing N (total number of categories or states (50)) by 4 (or alternatively multiply N by .25). This equals 12.5 ?
3. We now know that Q1 falls between the $12^{\text {th }}$ and $13^{\text {th }}$ category or, in this case, states.
4. To find the exact number for Q1, determine the midpoint between the $12^{\text {th }}$ and $13^{\text {th }}$ states or between .59 and .57)
5. $\mathrm{Q} 1=$ \qquad

What is the IQR for the Diversity Scores?

Steps to determine the IQR (Q3-Q1):
6. To obtain Q3, begin by multiplying 12.5 by 3 (or alternatively multiply $N(50)$ by .75). This will give us \qquad
7. Based on this number, Q3 falls between the $37^{\text {th }}$ and $38^{\text {th }}$ states
8. Determine the midpoint between these two states. This equals This tells us that 50% of the cases fall between .58 and .24.
9. To obtain the IQR subtract Q3 from Q1 which equals \qquad or the middle of the middle 50% of the cases.

What is the IQR for the Diversity Scores?

Steps to determine the IQR (Q3-Q1):

6. To obtain Q3, begin by multiplying 12.5 by 3 (or alternatively multiply $\mathrm{N}(50)$ by .75). This will give us__37.5_.
7. Based on this number, Q3 falls between the $37^{\text {th }}$ and $38^{\text {th }}$ states
8. Determine the midpoint between these two states. This equals \qquad This tells us that 50% of the cases fall between .58 and .24 .
9. To obtain the IQR subtract Q3 from Q1 which equals \qquad or

What is the IQR for the Diversity Scores?

Steps to determine the IQR (Q3-Q1):
6. To obtain Q3, begin by multiplying 12.5 by 3 (or alternatively multiply $\mathrm{N}(50)$ by .75). This will give us_37.5_.
7. Based on this number, Q3 falls between the $37^{\text {th }}$ and $38^{\text {th }}$ states.
8. Determine the midpoint between these two states. This equals 24 . This tells us that 50% of the cases fall between the IQR scores of .58 and .24 .
9. To obtain the IQR subtract Q3 from Q1 which equals. 34 \qquad

The Box Plot

- The Box Plot is a graphic device that visually presents the following elements: the range, the $I Q R$, the median, the quartiles, amount and direction of skewness, the minimum (lowest value,) and the maximum (highest value.)

Measures of Variability: Shortcomings of the Range and IQR

- The range is based on only two categories (the highest and lowest)
- Likewise, only two categories are used to calculate the inter-quartile range.
- Neither allows us to know how much variation there is among all the categories.

Determining the Variance in the "Percentage Increase" in the Nursing Home Population, 1980-1990	
Nine Regions of U.S.	Percentage
Pacific	15.7
West North Central	16.2
New England	17.6
East North Central	23.2
West South Central	24.3
Middle Atlantic	28.5
East South Central	38.0
Mountain	47.9
South Atlantic	71.7
What statistics have we learned so far to describe the variation above? Is there a lot of variation between the categories (regions of U.S.)?	
Range, Inter-Quartile Range (IQR) There appears to be a lot of variation between regions.	

Comparing the Range and the Variance

The range uses only two of the cases to determine/calculate the variability of a group.

We will see that the variance considers every single case prior to determining/calculating the degree of variance.

Determining the Variation in the Percentage Change in the Nursing Home Population, 1980-1990		
Nine Regions of U.S.	Percentage	$Y-\bar{Y}$
Pacific	15.7	15.7-31.5 $=-15.8$
West North Central	16.2	16.2-31.5 = -15.3
New England	17.6	17.6-31.5 = -13.9
East North Central	23.2	$23.2-31.5=-8.3$
West South Central	24.3	$24.3-31.5=-7.2$
Middle Atlantic	28.5	28.5-31.5 = - 3.0
East South Central	38.0	$38.0-31.5=6.5$
Mountain	47.9	$47.9-31.5=16.4$
South Atlantic	71.7	$71.7-31.5=40.2$
$($ mean $=31.5$)	$\Sigma Y=283.1$	$\Sigma(Y-\bar{Y})=0$
Next, we can determine the distance between (1) each region and (2) the average. This will show us how much each case (i.e., region) varies from the mean. Then, we can add up the variation scores for each region to get the "total" variation for all the cases (or regions in this example).		

Percentage Change in the Nursing Home Population, 1980-1990		
Nine Regions of U.S. Percentage	$Y-\bar{Y}$	$(Y-\bar{Y})^{2}$ ed deviations)
Pacific 15.7	15.7-31.5 = -15.8	249.64
West North Central 16.2	16.2-31.5 = -15.3	234.09
New England 17.6	17.6-31.5 = -13.9	193.21
East North Central 23.2	23.2-31.5 = - 8.3	68.89
West South Central 24.3	$24.3-31.5=-7.2$	51.84
Middle Atlantic 28.5	28.5-31.5 = - 3.0	9.00
East South Central 38.0	$38.0-31.5=6.5$	42.25
Mountain 47.9	$47.9-31.5=16.4$	268.96
South Atlantic 71.7	$71.7-31.5=40.2$	1616.04
(mean $=31.5$) $\quad \Sigma \bar{Y}=283.1$	$\Sigma(\mathrm{Y}-$	2733.92
- The best solution is to square the differences before adding them up (when two negative numbers are multiplied the resulting product is a positive number). Then we can get the average squared variance and then un-square it to have the average variance (once un-squaring it, the number is called the "standard deviation" rather than the variance).		

Measures of Variability: The Variance

> To Sum Up:

The Variance is the average of the squared differences from the mean.
The Variance is a measure of variability for interval-ratio variables.

$$
s_{Y}^{2}=\frac{\sum(Y-\bar{Y})^{2}}{N-1}
$$

Measures of Variability: Standard Deviation

- One problem with the variance is that the final number obtained is in a squared form
(that is, we squared all the differences from the mean and so the final number is still "inflated" in this way making it difficult to interpret)
- One solution is to un-square the variance, that is, take the square root of the variance so that the number is no longer in a squared form (or "inflated") and it is back to its original form. The square root of the variance is called the Standard Deviation (or standard difference).

Measures of Variability: Standard Deviation

- To obtain the square root of the variance simply enter the number (variance) into your calculator and then push the square root button.
- If the variance is 341.74 the standard deviation would be 18.49 . This tells us that the average distance of a case (region) from the mean is 18.49.
-Thus, this standard deviation tells us that there is a lot of variation between the regions. (If the standard deviation had been 2, we would have concluded that the regions did not vary among themselves very much.)

Measures of Variability: the Variance

The Variance is the average of the squared deviations (differences) from the mean.

$$
\text { Variance }=s_{Y}^{2}=\frac{\sum(Y-\bar{Y})^{2}}{N-1}
$$

In our example we would take the sum of the squared differences (2733.92) and divide this number by the total number of cases minus one ($9-1=8$). This would give us 341.74 _or the variance for the Percent Increase in the Nursing Home population by region.

Measures of Variability:

 Standard Deviation(a look at what's to come in future chapters)

We will see later that when the data are "normally distributed" around the mean (produce a normal curve), 34% of the scores will be one standard deviation (that is, the average distance) above the mean and 34% will be one standard deviation (average distance) below the mean.

Scores are often "normally distributed" around the mean when a random sample has been used to obtain the scores or there are a large number of cases.

A Leap of Faith:

We can use the normal curve and standard deviation to determine the percentage of cases that are close to the mean as well as the percentage that are far from the mean.

Figure 10.3 Percentages Under the Normal Curve

Cumulative Percentage Distribution

Minimum Age	Frequency	Percentage	Cumulative Percentage
14	1	3.7	3.7
15	1	3.7	7.4
16	9	33.3	40.7
17	4	14.8	55.5
18	12	44.4	99.9^{\star}
Total N	27	99.9^{\star}	
* Doesn't total to 100% due to rounding			

